

1	Global	inorganic	nitrate	production	mechanisms:
-				r	0

2 Comparison of a global model with nitrate isotope

3 observations

- 4
- 5 Becky Alexander¹, Tomás Sherwen^{2,3}, Christopher D. Holmes⁴, Jenny A. Fisher⁵, Qianjie
- 6 Chen^{1,6}, Mat J. Evans^{2,3}, Prasad Kasibhatla⁷
- 7
- 8 ¹Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195, USA
- 9 ²Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York YO10 5DD, UK
- 10 ³National Center for Atmospheric Science, University of York, York YO10 5DD, UK
- ⁴Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL 32306, USA
- 12 ⁵Centre for Atmospheric Chemistry, University of Wollongong, Wollongong, New South Wales 2522, Australia
- 13 ⁶Now at Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- ¹⁴ ⁷Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
- 15
- 16 Correspondence to: Becky Alexander (<u>beckya@uw.edu</u>)
- 17

18 Abstract. The formation of inorganic nitrate is the main sink for nitrogen oxides ($NO_x = NO + NO_2$). Due to the 19 importance of NO_x for the formation of tropospheric oxidants such as the hydroxyl radical (OH) and ozone, 20 understanding the mechanisms and rates of nitrate formation is paramount for our ability to predict the atmospheric 21 lifetimes of most reduced trace gases in the atmosphere. The oxygen isotopic composition of nitrate ($\Delta^{17}O(nitrate)$) is 22 determined by the relative importance of NO_x sinks, and thus can provide an observational constraint for NO_x 23 chemistry. Until recently, the ability to utilize $\Delta^{17}O(nitrate)$ observations for this purpose was hindered by our lack 24 of knowledge about the oxygen isotopic composition of ozone ($\Delta^{17}O(O_3)$). Recent and spatially widespread 25 observations of $\Delta^{17}O(O_3)$ have greatly reduced this uncertainty, and allow for an updated comparison of modeled and

1 observed $\Delta^{17}O(nitrate)$ and a reassessment of modeled nitrate formation pathways. Model updates based on recent 2 laboratory studies of heterogeneous reactions renders dinitrogen pentoxide (N_2O_5) hydrolysis as important as NO_2 + 3 OH (both 41%) for global inorganic nitrate production near the surface. All other nitrate production mechanisms 4 represent less than 6% of global nitrate production near the surface, but can be dominant locally. Updated reaction 5 rates for aerosol uptake of NO2 result in significant reduction of nitrate and nitrous acid (HONO) formed through this 6 pathway in the model, and render NO₂ hydrolysis a negligible pathway for nitrate formation globally. Although 7 photolysis of aerosol nitrate may have implications for NOx, HONO and oxidant abundances, it does not significantly 8 impact the relative importance of nitrate formation pathways. Modeled $\Delta^{17}O(nitrate)$ (28.6 ± 4.5%) compares well 9 with the average of a global compilation of observations (27.6 \pm 5.0%), giving confidence in the model's 10 representation of the relative importance of ozone versus HO_x (= $OH + HO_2 + RO_2$) in NO_x cycling and nitrate 11 formation.

12

13 1. Introduction

14

15 Nitrogen oxides ($NO_x = NO + NO_2$) are a critical ingredient for the formation of tropospheric ozone (O₃). 16 Tropospheric ozone is a greenhouse gas, is a major precursor for the hydroxyl radical (OH), and is considered an air 17 pollutant due to its negative impacts on human health. The atmospheric lifetime of NO_x is determined by its oxidation 18 to inorganic and organic nitrate. The formation of inorganic nitrate (HNO₃(g) and particulate NO₃⁻) is the dominant 19 sink for NO_x globally, while formation of organic nitrate may be significant in rural and remote continental locations 20 (Browne and Cohen, 2014). Organic nitrate as a sink for NO_x may be becoming more important in regions in North 21 America and Europe where NO_x emissions have declined (Zare et al., 2018). Uncertainties in the rate of oxidation of 22 NO_x to nitrate has been shown to represent a significant source of uncertainty for ozone and OH formation in models 23 (e.g., Newsome and Evans (2017)), with implications for our understanding of the atmospheric lifetime of species 24 such as methane, whose main sink is reaction with OH.

<sup>NO_x is emitted to the atmosphere primarily as NO by fossil fuel and biomass/biofuel burning, soil microbes, and
lightning. Anthropogenic sources from fossil fuel and biofuel burning and from the application of fertilizers to soil
for agriculture currently dominate NO_x sources to the atmosphere (Jaeglé et al., 2005). After emission, NO is rapidly</sup>

- $1 \qquad \text{oxidized to NO}_2 \text{ by ozone (O}_3\text{), peroxy (HO}_2\text{) and hydroperoxy radicals (RO}_2\text{), and halogen oxides (e.g., BrO). During}$
- 2 the daytime, NO₂ is rapidly photolyzed to NO + O at wavelengths (λ) < 424 nm. NO_x cycling between NO and NO₂
- 3 proceeds several orders of magnitude faster than oxidation of NO_x to nitrate during the daytime (Michalski et al.,
- 4 2003).
- 5

6 Formation of inorganic nitrate is dominated by oxidation of NO₂ by OH during the day and by the hydrolysis of 7 dinitrogen pentoxide (N₂O₅) at night (Alexander et al., 2009). Recent implementation of reactive halogen chemistry 8 in models of tropospheric chemistry show that formation of nitrate from the hydrolysis of halogen nitrates (XNO₃, 9 where X = Br, Cl, or I) is also a sink for NO_x with implications for tropospheric ozone, OH, reactive halogens, and 10 aerosol formation (Schmidt et al., 2016;Sherwen et al., 2016;Saiz-Lopez et al., 2012;Long et al., 2014;Parrella et al., 11 2012; von Glasow and Crutzen, 2004). Other inorganic nitrate formation pathways include hydrogen-abstraction of 12 hydrocarbons by the nitrate radical (NO₃), heterogeneous reaction of N₂O₅ with particulate chloride (Cl⁻), 13 heterogeneous uptake of NO2 and NO3, direct oxidation of NO to HNO3 by HO2, and hydrolysis of organic nitrate. 14 Inorganic nitrate partitions between the gas ($HNO_3(g)$) and particle (NO_3^{-}) phases, with its relative partitioning 15 dependent upon aerosol abundance, aerosol liquid water content, aerosol chemical composition, and temperature. 16 Inorganic nitrate is lost from the atmosphere through wet or dry deposition to the Earth's surface with a global lifetime 17 against deposition on the order of 3-4 days (Alexander et al., 2009).

18

Formation of inorganic nitrate was thought to be a permanent sink for NO_x in the troposphere due to the slow photolysis of nitrate compared to deposition. However, laboratory and field studies have shown that NO_3^- adsorbed on surfaces is photolyzed at rates much higher than $HNO_3(g)$ (Ye et al., 2016). The photolysis of NO_3^- in snow grains on ice sheets has a profound impact on the oxidizing capacity of the polar atmosphere (Domine and Shepson, 2002). More recently, observations of NO_x and nitrous acid (HONO) provide evidence of photolysis of aerosol NO_3^- in the marine (Reed et al., 2017;Ye et al., 2016) and continental (Ye et al., 2018;Chen et al., 2019) boundary layer, with implications for ozone and OH (Kasibhatla et al., 2018).

26

Organic nitrates form during reaction of NO_x and NO₃ with biogenic volatile organic compounds (BVOCs) and their
oxidation products (organic peroxy radicals, RO₂) (Browne and Cohen, 2014;Liang et al., 1998). Products of these

reactions include peroxy nitrates (RO₂NO₂) and alkyl and multifunctional nitrates (RONO₂) (O'Brien et al., 1995). 1 2 Peroxy nitrates are thermally unstable and decompose back to NO_x on the order of minutes to days at warm 3 temperatures. Decomposition of longer-lived peroxy nitrates such as peroxyacetyl nitrate (PAN) can provide a source 4 of NO_x to remote environments (Singh et al., 1992). The fate of RONO₂ is uncertain. First-generation RONO₂ is 5 oxidized to form second-generation RONO₂ species with a lifetime of about a week for the first-generation species 6 with \geq 4 carbon atoms, and up to several weeks for species with fewer carbon atoms (e.g., days to weeks for methyl 7 nitrate) (Fisher et al., 2018). Subsequent photolysis and oxidation of second-generation RONO₂ species can lead to 8 the recycling of NO_x (Müller et al., 2014), although recycling efficiencies are highly uncertain (Horowitz et al., 9 2007;Paulot et al., 2009). RONO₂ can also partition to the particle phase (pRONO₂) contributing to organic aerosol 10 formation (Xu et al., 2015). pRONO₂ is removed from the atmosphere by deposition to the surface, or through 11 hydrolysis to form inorganic nitrate and alcohols (Rindelaub et al., 2015;Jacobs et al., 2014).

12

13 The oxygen isotopic composition ($\Delta^{17}O = \delta^{17}O - 0.52 \text{ x } \delta^{18}O$) of nitrate is determined by the relative importance of 14 oxidants leading to nitrate formation from the oxidation of NO_x (Michalski et al., 2003). Observations of the oxygen 15 isotopic composition of nitrate ($\Delta^{17}O(nitrate)$) have been used to quantify the relative importance of different nitrate 16 formation pathways and to assess model representation of the chemistry of nitrate formation in the present day 17 (Alexander et al., 2009;Michalski et al., 2003;Costa et al., 2011;Ishino et al., 2017a;Morin et al., 2009;Morin et al., 18 2008;Savarino et al., 2007;Kunasek et al., 2008;Savarino et al., 2013;McCabe et al., 2007;Morin et al., 2007;Hastings 19 et al., 2003;Kaiser et al., 2007;Brothers et al., 2008;Ewing et al., 2007) and in the past from nitrate archived in ice 20 cores (Sofen et al., 2014; Alexander et al., 2004; Geng et al., 2014; Geng et al., 2017). Ozone-influenced reactions in 21 NO_x oxidation lead to high $\Delta^{17}O(nitrate)$ values while HO_x -influenced reactions lead to $\Delta^{17}O(nitrate)$ near zero. 22 Oxidation by XO (where X = Br, Cl, or I) leads to Δ^{17} O(nitrate) values similar to reactions with ozone because the 23 oxygen atom in XO is derived from the reaction $X + O_3$. Therefore, $\Delta^{17}O(\text{nitrate})$ is determined by the relative 24 importance of $O_3 + XO$ versus HO_x (= $OH + HO_2 + RO_2$) in both NO_x cycling and oxidation to nitrate. Due to rapid 25 NO_x-cycling during the daytime, NO_x achieves isotopic equilibrium and its Δ^{17} O value (Δ^{17} O(NO_x)) is solely 26 determined by the relative abundance of $(O_3 + XO)$ to $(HO_2 + RO_2)$.

1	The Δ^{17} O value of HO _x (Δ^{17} O(HO _x)) is near zero due to isotopic exchange of OH with water vapor (Dubey et al.,
2	1997). The Δ^{17} O value of ozone ($\Delta^{17}O(O_3)$) was until recently not well known due to uncertainties arising from
3	sampling artifacts in the earlier measurements (Johnston and Thiemens, 1997;Krankowsky et al., 1995) and has been
4	the largest source of uncertainty in quantification of nitrate formation pathways using observations of $\Delta^{17}O(nitrate)$
5	(Alexander et al., 2009). Previous modeling studies showed good agreement with observations of $\Delta^{17}O(nitrate)$ when
6	assuming $\Delta^{17}O(O_3) = 35\%$ (Alexander et al., 2009;Michalski et al., 2003). Recently, much more extensive
7	observations of $\Delta^{17}O(O_3)$ using a new technique (Vicars et al., 2012) show $\Delta^{17}O(O_3) = 26 \pm 1\%$ around the globe
8	(Vicars et al., 2012;Ishino et al., 2017b;Vicars and Savarino, 2014), and suggest that previous modeling studies are
9	biased low in $\Delta^{17}O(\text{nitrate})$ (e.g., Alexander et al. (2009)), which would occur if the model underestimated the relative
10	role of ozone in NO _x chemistry. Reduction in uncertainty in the value of $\Delta^{17}O(O_3)$ enables improved interpretation of
11	$\Delta^{17}O(nitrate)$ as an observational constraint for the relative importance of nitrate formation pathways in the
12	atmosphere. Here, we examine the relative contribution of each nitrate formation pathway in a global chemical
13	transport model and compare the model with observations of $\Delta^{17}O(nitrate)$ from around the world.

14

15 2. Methods

16

17 We use the GEOS-Chem global chemical transport model version 12.0.0 driven by assimilated meteorology from the 18 MERRA-2 reanalysis product with a native resolution of 0.5° x 0.625° and 72 vertical levels from the surface up to 19 the 0.01 hPa pressure level. For computational expediency, the horizontal and vertical resolution were downgraded 20 to 4° x 5° and 47 vertical levels. GEOS-Chem was originally described in Bey et al. (2001) and includes coupled 21 HOx-NOx-VOC-ozone-halogen-aerosol tropospheric chemistry as described in Sherwen et al. (2016) and Sherwen et 22 al. (2017) and organic nitrate chemistry as described in Fisher et al. (2016). Aerosols interact with gas-phase chemistry 23 through the effect of aerosol extinction on photolysis rates (Martin et al., 2003) and heterogeneous chemistry (Jacob, 24 2000). The model calculates deposition for both gas species and aerosols (Liu et al., 2001; Zhang et al., 2001; Wang 25 et al., 1998).

26

Global anthropogenic emissions, including NO_x, are from the Community Emissions Data System (CEDS) inventory
from 1950 – 2014 C.E. (Hoesly et al., 2018a). The CEDS global emissions inventory is overwritten by regional

1 anthropogenic emissions inventories in the U.S. (EPA/NE11), Canada (CAC), Europe (EMEP), and Asia (MIX (Li et 2 al., 2017)). Global shipping emissions are from the International Comprehensive Ocean-Atmosphere Data Set 3 (ICOADS), which was implemented into GEOS-Chem as described in Lee et al. (2011). NO_x emissions from ships 4 are processed using the PARANOX module described in Vinken et al. (2011) and Holmes et al. (2014) to account for 5 non-linear, in-plume ozone and HNO3 production. Lightning NOx emissions match the OTD/LIS satellite 6 climatological observations of lightning flashes as described by Murray et al. (2012). Emissions from open fires are 7 from the Global Fire Emissions Database (GFED4.1). Biogenic soil NO_x emissions are described in Hudman et al. 8 (2012). Aircraft emissions are from the Aviation Emissions Inventory Code (AEIC) (Stettler et al., 2011).

9

10 Chemical processes leading to nitrate formation in GEOS-Chem have expanded since the previous work of Alexander 11 et al. (2009). Figure 1 summarizes the formation of inorganic nitrate in the current model. In the model, NO is 12 oxidized by O₃, HO₂, RO₂ and halogen oxides (XO = BrO, CIO, IO, and OIO) to form NO₂. NO₂ can form HNO₃ 13 directly from its reaction with OH and HO₂ and through hydrolysis on aerosol surfaces. NO₂ can react with XO to 14 form halogen nitrates (BrNO₃, ClNO₃, and INO₃), which can then form HNO₃ upon hydrolysis (as described in 15 Sherwen et al. (2016)). NO₂ can also react with O₃ to form NO₃, which can then react with NO₂, hydrocarbons (HC), 16 and the biogenic VOCs monoterpenes (MTN) and isoprene (ISOP). Reaction of NO₃ with NO₂ forms N₂O₅, which 17 can subsequently hydrolyze or react with Cl⁻ in aerosol to form HNO₃. Reaction of NO₃ with HC forms HNO₃ via 18 hydrogen abstraction. Reactions of NO₃ are only important at night due to its short lifetime against photolysis. 19 Formation of organic nitrate (RONO₂) was recently updated in the model as described in Fisher et al. (2016). Reaction 20 of NO₃ with MTN and ISOP can form RONO₂. RONO₂ also forms from the reaction of NO with RO₂ derived from 21 OH oxidation of BVOCs. RONO₂ hydrolyzes to form HNO₃ on a timescale of 1 hour. Inorganic nitrate partitions 22 between the gas (HNO₃(g)) and particle (NO₃⁻) phase according to local thermodynamic equilibrium as calculated in 23 the ISORROPIA-II aerosol thermodynamic module (Fountoukis and Nenes, 2007). HNO₃(g) and NO₃⁻ are mainly 24 lost from the atmosphere via wet and dry deposition to the surface.

25

In the "standard" model, hydrolysis of N₂O₅, NO₃ ($\gamma_{NO3} = 1 \times 10^{-3}$), and NO₂ ($\gamma_{NO2} = 1 \times 10^{-4}$) occur on aerosol surfaces only. Uptake and hydrolysis of N₂O₅ on aerosol surfaces depends on the chemical composition of aerosols, temperature, and humidity as described in Evans and Jacob (2005). Recently, Holmes et al. (2019) updated the

1 reaction probabilities of the NO₂ and NO₃ heterogeneous reactions in the model to depend on aerosol chemical 2 composition and relative humidity. Holmes et al. (2019) also updated the N_2O_5 reaction probability to additionally 3 depend on the H_2O and NO_3 ⁻ concentrations in aerosol (Bertram and Thornton, 2009). In addition to these updates 4 for hydrolysis on aerosol, Holmes et al. (2019) included the uptake and hydrolysis of N2O5, NO2, and NO3 in cloud 5 water and ice limited by cloud entrainment rates. We incorporate these updates from Holmes et al. (2019) into the 6 "cloud chemistry" model to examine the impacts on global nitrate production mechanisms. We consider the "cloud 7 chemistry" model as state-of-the science, and as such we focus on the results of this particular simulation. Additional 8 model sensitivity studies are also performed and examined relative to the "standard" model simulation. These 9 additional sensitivity simulations are described in Section 4.

10

11 Δ^{17} O(nitrate) is calculated in the model using monthly-mean, local chemical production rates, rather than by treating 12 different isotopic combinations of nitrate as separate tracers that can be transported in the model. Alexander et al. 13 (2009) transported four nitrate tracers, one each for nitrate production by NO₂+OH, N₂O₅ hydrolysis, NO₃+HC, and 14 nitrate originating from its formation in the stratosphere. Since $\Delta^{17}O(NO_x)$ was not transported in the Alexander et al. 15 (2009) model, it was calculated using local production rates, so effectively only one-third of the $\Delta^{17}O(nitrate)$ was 16 transported in Alexander et al. (2009). Accurately accounting for transport of $\Delta^{17}O(\text{nitrate})$ in the model would require 17 transporting all individual isotopic combinations of the primary reactant (NO), the final product (nitrate), and each 18 reaction intermediate (e.g., N₂O₅), which we do not do here due to the large computational costs. Thus, the model 19 results shown here represent $\Delta^{17}O(nitrate)$ from local NO_x cycling and nitrate production. This may lead to model 20 biases, particularly in remote regions such as polar-regions in winter-time when most nitrate is likely transported from 21 lower latitudes or the stratosphere. This should make little difference in polluted regions where most nitrate is formed 22 locally. This approach will however reflect the full range of possible modeled $\Delta^{17}O(\text{nitrate})$ values, which can then 23 be compared to the range of observed $\Delta^{17}O(\text{nitrate})$ values.

24

The $\Delta^{17}O(\text{nitrate})$ value of nitrate produced from each production pathway is calculated as shown in Table 1. The value of *A* in Table 1 represents the relative importance of the oxidation pathways of NO to NO₂ where the oxygen atom transferred comes from ozone (NO + O₃ and NO + XO):

1	$A = \frac{k_{O_3 + NO}[O_3] + k_{XO + NO}[XO]}{k_{O_3 + K_{O_3} + K_$	(E1)
2	In E1, k represents the local reaction rate constant for each of the four reactions, $XO = BrO$, Cle	O, IO, and OIO, and
3	we assume $\Delta^{17}O(XO)$ is equal to the $\Delta^{17}O$ value of the terminal oxygen atoms of ozone, as desc	ribed in more detail
4	below. This effectively assumes that the other oxidation pathways (NO + HO ₂ and NO + RO ₂) yield $\Delta^{17}O(NO_x) =$
5	0‰. Although HO ₂ may have a small 17 O enrichment on the order of 1-2‰ (Savarino and Th	iemens, 1999b), the
6	assumption that this pathway yields $\Delta^{17}O(NO_x) = 0\%$ simplifies the calculation and leads to neg	igible differences in
7	calculated $\Delta^{17}O(nitrate)$ (Michalski et al., 2003). This approach assumes that NO _x cycling is in phase of the second seco	otochemical steady-
8	state, which only occurs during the daytime. A is calculated in the model as the 24-hour average	NO ₂ production rate,
9	rather than the daytime average only. As was shown in Alexander et al. (2009), rapid daytime NO	D_x cycling dominates

10 the calculated 24-hour averaged A value, leading to negligible differences in calculated $\Delta^{17}O(\text{nitrate})$ for 24-hour 11 averaged values versus daytime averaged values.

12

13 NO_x formed during the day will retain its daytime $\Delta^{17}O(NO_x)$ signature throughout the night due to lack of NO_2 14 photolysis (Morin et al., 2011), suggesting similar A values for the nighttime reactions (R2, R4, R5, R8, and R10 in 15 Table 1). However, NO emitted at night will retain its originally emitted isotopic signature ($\Delta^{17}O(NO) = 0\%$) due to 16 lack of NOx cycling under dark conditions. Any NO emitted at night and oxidized to NO2 before sunrise will result in $\Delta^{17}O(NO_2)$ equal to one-half of the $\Delta^{17}O$ value of the oxidant, since only one of the two oxygen atoms of NO₂ will 17 18 originate from the oxidant. Since HO_x abundance is low at night, ozone will be the dominant oxidant. Thus, NO both 19 emitted and oxidized to NO₂ at night will lead to $A_{night} = 0.5$ (half of the O atoms of NO₂ originate from O₃). Since 20 the atmospheric lifetime of NO_x against nighttime oxidation to nitrate (R2+R4+R5) is typically greater than 24 hours 21 (Figure S1), most nitrate formed during the nighttime will form from NO_x that reached photochemical equilibrium 22 during the previous day. Thus, we use values of A calculated as the 24-hour average NO₂ production rate for 23 calculating the $\Delta^{17}O(\text{nitrate})$ value of all nitrate production pathways, including those that can occur at night. This is 24 consistent with a box modeling study that explicitly calculated the diurnal variability of $\Delta^{17}O(NO_x)$ and $\Delta^{17}O(nitrate)$ 25 suggesting similar (within 5%) values for Δ^{17} O(nitrate) when assuming the NO_x reached photochemical steady-state 26 versus explicit calculation of diurnal variability of $\Delta^{17}O(NO_x)$ and $\Delta^{17}O(nitrate)$ (Morin et al., 2011). Using 24-hour averaged A values may lead to an overestimate of $\Delta^{17}O(nitrate)$ in locations with more rapid nighttime nitrate 27

1	formation rates such as in China and India (Figure S1). However, even in these locations the lifetime of NO_x against
2	nighttime oxidation is greater than 12 hours, suggesting that over half of nitrate formation at night occurs from the
3	oxidation of NO _x that reached photochemical equilibrium during the daytime. When comparing modeled $\Delta^{17}O(nitrate)$
4	with observations, we add error bars to model values in these locations (Beijing and Mt. Lulin, Taiwan) that reflect
5	the range of possible A values for nighttime nitrate formation, with the high end (A_{high}) reflecting 24-hour average A
6	values and the low end assuming that half of nitrate formation occurs from oxidation of NO_x that reached
7	photochemical equilibrium during the daytime ($A_{low} = 0.5A + 0.5A_{night} = 0.5A + 0.25$).
8	
9	Δ^{17} O(nitrate) for total nitrate is calculated in the model according to:
10	$\Delta^{17}O(nitrate) = \sum_{R=R_1}^{R_{10}} f_R \Delta^{17}O(nitrate)_R $ (E2)
11	where f_R represents the fractional importance of each nitrate production pathway (R1-R10 in Table 1) relative to total
12	nitrate production, and $\Delta^{17}O(\text{nitrate})_R$ is the $\Delta^{17}O(\text{nitrate})$ value for each reaction as described in Table 1. To calculate
13	$\Delta^{17}O(\text{nitrate})$, we assume that the mean $\Delta^{17}O$ value of the ozone molecule ($\Delta^{17}O(O_3)$) is equal to 26‰ based on recent
14	observations (Vicars et al., 2012;Ishino et al., 2017b;Vicars and Savarino, 2014). Since the ¹⁷ O enrichment in O ₃ is
15	contained entirely in its terminal oxygen atoms (Vicars et al., 2012;Berhanu et al., 2012;Bhattacharya et al.,
16	2008;Savarino et al., 2008;Michalski and Bhattacharya, 2009;Bhattacharya et al., 2014), and it is the terminal oxygen
17	atom that is transferred to the oxidation product during chemical reactions (Savarino et al., 2008;Berhanu et al., 2012),
18	the $\Delta^{17}O$ value of the oxygen atom transferred from ozone to the product is 50% larger than the bulk $\Delta^{17}O(O_3)$ value.
19	Thus, we assume that the $\Delta^{17}O$ value of the oxygen atom transferred from $O_3 (\Delta^{17}O(O_3^*)) = 1.5 \text{ x } \Delta^{17}O(O_3) = 39\%$, as
20	in previous work (e.g., (Morin et al., 2011)), where $\Delta^{17}O(O_3^*)$ represents the $\Delta^{17}O$ value of the terminal oxygen atoms
21	in ozone.
22	
23	
24	3. Results and Discussion
25	
26	Figure 1 shows the relative importance of the different oxidation pathways of NO to NO ₂ and nitrate formation below

27 1 km altitude in the model for the "cloud chemistry" simulation, with equivalent values for the "standard" simulation

shown in parentheses. We focus on model results near the surface because these can be compared to observations;
 currently only surface observations of Δ¹⁷O(nitrate) are available. The dominant oxidant of NO to NO₂ is O₃ (84 85%). Much of the remaining oxidation occurs due to the reaction with peroxy radicals (HO₂ and RO₂). Oxidation of
 NO to NO₂ by XO is minor (1%) and occurs over the oceans because the main source of tropospheric reactive halogens
 is from sea salt aerosol and sea water (Chen et al., 2017;Sherwen et al., 2016;Wang et al., 2018) (Figure 2).

6

7 For both the "cloud chemistry" and "standard" simulations, the two most important nitrate formation pathways are 8 $NO_2 + OH (41-42\%)$ and N_2O_5 hydrolysis (28-41\%), the latter of which is dominant over the mid- to high-northern 9 continental latitudes during winter where both NO_x emissions and aerosol abundances are relatively large (Figures 1 10 and 3). The "cloud chemistry" simulation results in an equal importance of nitrate formation via NO2 + OH and N2O5 11 hydrolysis (both 41%) due to increases in the rate of N₂O₅ uptake in clouds and decreases in the importance of NO₂ hydrolysis, which can compete with N_2O_5 formation at night. In the "standard" model, NO_2 hydrolysis represents an 12 13 important nitrate production mechanism (12%), but it is negligible in the "cloud chemistry" simulation due to the reduction in the reaction probability (from $\gamma_{NO2} = 10^{-4}$ to $\gamma_{NO2} = 10^{-4}$ to 10^{-8}) in the model, which is supported by 14 15 laboratory studies (Burkholder et al., 2015;Crowley et al., 2010;Tan et al., 2016). The formation of HNO₃ from the 16 hydrolysis of RONO₂ formed from both daytime (NO + RO₂) and nighttime (NO₃ + MTN/ISOP) reactions represents 17 6% of total, global nitrate formation (Figure 1) and is dominant over Amazonia (Figure 3). RONO₂ hydrolysis 18 represents up to 20% of inorganic nitrate formation in the southeast U.S. (Figure 3). This is similar to Fisher et al. 19 (2016) who estimated that formation of RONO₂ accounts for up to 20% of NO_x loss in this region during summer, 20 with RONO₂ hydrolysis representing 60% of RONO₂ loss. Globally, the formation of inorganic nitrate from the 21 hydrolysis of RONO₂ is dominated by RONO₂ formation from the daytime reactions (3-6%), while the formation of 22 RONO₂ from nighttime reactions represents up to 3%. The relative importance of nighttime and daytime RONO₂ 23 formation is expressed as a range because precursors to RONO₂ that formed from monoterpenes can form from both 24 daytime and nighttime reactions, and these precursors are not separately diagnosed in the model output. HNO₃ 25 formation from $NO_3 + HC$ and the hydrolysis of XNO_3 are small globally (5-6%), but the latter is dominant over the 26 remote oceans (Figure 3).

1 Figures 4 - 6 show modeled $\Delta^{17}O(\text{nitrate})$ for the "cloud chemistry" simulation (the "standard" simulation is shown in 2 Figures S2 – S4). Figure 4 shows modeled annual-mean $\Delta^{17}O(\text{nitrate})$ below 1 km altitude. The model predicts an 3 annual-mean range of $\Delta^{17}O(\text{nitrate}) = 4 - 33\%$ near the surface. The lowest values are over Amazonia due to the 4 dominance of RONO₂ hydrolysis and the highest values are over the mid-latitude oceans due to the dominance of 5 XNO₃ hydrolysis (Figures 3 and 4).

6

7 Figure 5 compares the model with a global compilation of $\Delta^{17}O(nitrate)$ observations from around the world. 8 Observations included in Figure 5 include locations where there is enough data to calculate monthly means at each 9 location (McCabe et al., 2006;Kunasek et al., 2008;Hastings et al., 2003;Kaiser et al., 2007;Michalski et al., 10 2003;Guha et al., 2017;Savarino et al., 2013;Ishino et al., 2017b;Savarino et al., 2007;Alexander et al., 2009;He et al., 11 2018b). Figure 6 compares the seasonality in modeled $\Delta^{17}O(\text{nitrate})$ to the observations where samples were collected 12 over the course of approximately one year (McCabe et al., 2006;Kunasek et al., 2008;Kaiser et al., 2007;Michalski et 13 al., 2003;Guha et al., 2017;Savarino et al., 2013;Ishino et al., 2017b;Savarino et al., 2007;Alexander et al., 2009). In 14 contrast to Alexander et al. (2009), the model does not significantly underestimate the $\Delta^{17}O(\text{nitrate})$ observations when 15 assuming $\Delta^{17}O(O_3)$ on the order of 25‰ (see Figure 2d in Alexander et al. (2009)). The increase in modeled 16 Δ^{17} O(nitrate) is due to increased importance of O₃ in NO_x cycling (85% below 1 km) compared to Alexander et al. 17 (2009) (80% below 1 km altitude), and an increase in the number and fractional importance of nitrate formation 18 pathways that yield relatively high values of $\Delta^{17}O(nitrate)$ (red pathways in Fig. 1). Although XO species themselves 19 are only a minor NO oxidation pathway (1%), the addition of reactive halogen chemistry in the model has altered the 20 relative abundance of O₃ and HO_x (Sherwen et al., 2016) in such a way as to increase the modeled $\Delta^{17}O(NO_x)$. The 21 Alexander et al. (2009) study used GEOS-Chem v8-01-01, which included tropospheric nitrate formation from the 22 NO + OH, $N_2O_5 + H_2O$, and $NO_3 + HC$ pathways only. An increased importance of N_2O_5 hydrolysis (R4) and 23 additional nitrate formation pathways that yield relatively high values of $\Delta^{17}O(nitrate)$ (R5, R6, R8, and R10) in the 24 present study also explain the increase in modeled Δ^{17} O(nitrate) relative to Alexander et al. (2009). Assuming a value 25 of 35% for $\Delta^{17}O(O_3)$ in the model that did not include reactive halogen chemistry or heterogeneous reactions in cloud 26 water produced good agreement between modeled and observed $\Delta^{17}O(nitrate)$ in Alexander et al. (2009); however, in 27 the current version of the model this isotopic assumption leads to a model overestimate at nearly all locations (Figure

- 1 S5). The "cloud chemistry" model shows somewhat better agreement with the observations ($R^2 = 0.51$ in Figure 5)
- 2 compared to the "standard" model ($R^2 = 0.48$ in Figure S3). Improved agreement with the observations occurs in the
- 3 mid- to high-latitudes (Figures 6 and S4) is due to addition of N₂O₅ hydrolysis in clouds (Figures 3 and S6).
- 4

5 The mean Δ^{17} O(nitrate) value of the observations (27.7 ± 5.0‰) shown in Figure 5 is not significantly different from the modeled values at the location of the observations (28.6 \pm 4.5%); however, the range of $\Delta^{17}O(nitrate)$ values of 6 7 the observations (10.9 - 40.6%) is larger than in the model (19.6 - 37.6%). As previously noted in Savarino et al. 8 (2007), the maximum observed $\Delta^{17}O(\text{nitrate})$ value (40.6%) is not possible given our isotope assumption for the 9 terminal oxygen atom of ozone ($\Delta^{17}O(O_3^*) = 39\%$). Observed $\Delta^{17}O(nitrate) > 39\%$ (in Antarctica) has been suggested 10 to be due to transport of nitrate from the stratosphere (Savarino et al., 2007), as stratospheric O₃ is expected to have a 11 higher $\Delta^{17}O(O_3)$ value than ozone produced in the troposphere (Krankowsky et al., 2000; Mauersberger et al., 12 2001;Lyons, 2001). Indeed, the model underestimates the observations at Dumont d'Urville (DDU) and the South 13 Pole (both in Antarctica) during winter and spring (Figure 6), when and where the stratospheric contribution is 14 expected to be most important (Savarino et al., 2007). The model underestimate in Antarctica may also be due to 15 model underestimates of BrO column (Chen et al., 2017) and ozone abundance (Sherwen et al., 2016) in the southern 16 high latitudes. The largest model overestimates occur at Mt. Lulin, Taiwan (Figures 5 and 6). Based on nitrogen 17 isotope observations (δ^{15} N), nitrate at Mt. Lulin is thought to be influenced by anthropogenic nitrate emitted in polluted 18 areas of mainland China and transported to Mt. Lulin, rather than local nitrate production (Guha et al., 2017). The 19 model compares well to the mid-latitude locations close to pollution sources (La Jolla and Princeton), although the 20 model underestimates winter time $\Delta^{17}O(nitrate)$ in La Jolla, CA, USA.

21

22 4. Model uncertainties

The uncertainty in the two most important nitrate formation pathways, $NO_2 + OH$ and N_2O_5 hydrolysis, and their impacts on NO_x and oxidant budgets, have been examined and discussed elsewhere (Macintyre and Evans, 2010;Newsome and Evans, 2017;Holmes et al., 2019). The impacts of the formation and hydrolysis of halogen nitrates on global NO_x and oxidant budgets have also been previously examined (Sherwen et al., 2016). Here we focus on three additional processes using a set of model sensitivity studies. First, we examine the importance of the third most

important nitrate production pathway on the global scale as predicted by the "standard" model, NO₂ aerosol uptake
and hydrolysis, and its implications for the global NO_x, nitrate, and oxidant budgets. Second, we examine the role of
changing anthropogenic NO_x emissions over a 15-year period (2000 to 2015) on the relative importance of the
formation of inorganic nitrate from the hydrolysis of organic nitrates. Finally, we examine the role of aerosol nitrate
photolysis on the relative importance of different nitrate formation pathways. The impact of aerosol nitrate photolysis
on NO_x and oxidant budgets has been examined in detail elsewhere (Kasibhatla et al., 2018).

4.1 Heterogeneous uptake and hydrolysis of NO₂

9 Heterogeneous uptake of NO₂ to form HNO₃ and HONO is the third most important nitrate formation pathway in the 10 "standard" model on the global scale (Figure 1). The reaction probability (γ_{NO2}) measured in laboratory studies ranges 11 between 10⁻⁸ to 10⁻⁴ depending on aerosol chemical composition (Lee and Tang, 1988;Crowley et al., 2010;Gutzwiller 12 et al., 2002;Yabushita et al., 2009;Abbatt and Waschewsky, 1998;Burkhart et al., 2015;Broske et al., 2003;Li et al., 13 2018a;Xu et al., 2018). A value of $\gamma_{NO2} = 10^{-4}$ is used in the "standard" model, which is at the high end of the reported 14 range. A molar yield of 0.5 for both HNO3 and HONO formation is assumed in the model based on laboratory studies 15 and hypothesized reaction mechanisms (Finlayson-Pitts et al., 2003; Jenkin et al., 1988; Ramazan et al., 2004; Yabushita 16 et al., 2009). However, both the reaction rate and mechanism of this reaction and its dependence on chemical 17 composition and pH is still not well understood (Spataro and Ianniello, 2014).

18

8

19 The "cloud chemistry" simulation uses a reaction probability formulation for aerosol uptake of NO₂ (γ_{NO2}) that 20 depends on aerosol chemical composition, ranging from $\gamma_{NO2} = 10^{-8}$ for dust to $\gamma_{NO2} = 10^{-4}$ for black carbon based on 21 recent laboratory studies (Holmes et al., 2019). The updated NO₂ reaction probability results in a negligible (<1%) 22 importance of this reaction for nitrate formation, compared to 12% contribution in the "standard" model. The "cloud 23 chemistry" simulation significantly increases the fractional importance of N₂O₅ hydrolysis (from 28 to 41%, globally 24 below 1 km altitude) compared to the "standard" simulation, in part due to decreased competition from NO2 hydrolysis 25 and in part due to increased N_2O_5 hydrolysis in clouds. To evaluate the relative importance of competition from NO_2 26 hydrolysis and the addition of N_2O_5 hydrolysis in clouds, we perform a model sensitivity study that is the same as the 27 "standard" simulation but decreases the reaction probability of NO₂ hydrolysis on aerosol ($\gamma_{NO2} = 10^{-7}$), without adding 28 N₂O₅ hydrolysis in clouds. Similar to the "cloud chemistry" simulation, using $\gamma_{NO2} = 10^{-7}$ renders NO₂ hydrolysis a

- 1 negligible nitrate formation pathway, and increases the relative importance of N_2O_5 hydrolysis from 28% to 37%.
- 2 This suggests that reduced competition from NO_2 hydrolysis is the main reason for the increased importance of N_2O_5
- 3 hydrolysis in the "cloud chemistry" simulation, though the addition of heterogeneous reactions on clouds also plays a
- 4 role.
- 5

NO2 hydrolysis represents a significant source of HONO in the "standard" model simulation; the reduced NO2 reaction 6 7 probability from $\gamma_{NO2} = 10^{-4}$ to $\gamma_{NO2} = 10^{-7}$ results in a reduction of HONO below 1 km altitude by up to 100% over 8 the continents, with relatively small (up to 1 ppb) changes in nitrate concentrations (Figure 7). The reduction in the 9 rate of heterogeneous NO₂ uptake leads to reductions in OH where this reaction was most important in the model 10 (over China and Europe) due to reductions in HONO, but leads to increases in OH elsewhere due to increases in ozone 11 (by up to a few ppb) resulting from small increases in the NO_x lifetime due to a reduction in the NO_x sink (Figure 8). 12 Similar changes in HONO are seen when comparing the "standard" and "cloud chemistry" simulation (not shown). 13 Increased importance of N2O5 hydrolysis in both the "cloud chemistry" simulation and the simulation without cloud 14 chemistry but with a reduced reaction probability for NO₂ hydrolysis increases modeled annual-mean $\Delta^{17}O(\text{nitrate})$ 15 by up to 3‰ in China where this reaction is most important. This improves model agreement with monthly-mean 16 observations of Δ^{17} O(nitrate) in Beijing (He et al., 2018a) (Figures 5 and S3).

17

The product yields of NO₂ hydrolysis are also uncertain. Jenkin et al. (1988) proposed the formation of a water 18 19 complex, NO₂·H₂O, leading to the production of HONO and HNO₃. Finlayson-Pitts et al. (2003) and Ramazan et al. 20 (2004) proposed the formation of the dimer N_2O_4 on the surface, followed by isomerization to form NO⁺NO₃⁻. 21 Reaction of NO⁺NO₃ with H₂O results in the formation of HONO and HNO₃. Laboratory experiments by Yabushita 22 et al. (2009) suggested that dissolved anions catalyzed the dissolution of NO_2 to form a radical intermediate X-NO₂⁻ 23 (where X = Cl, Br, or I) at the surface followed by reaction with NO₂(g) to form HONO and NO₃⁻. These experiments 24 described above were performed at NO₂ concentrations much higher than exist in the atmosphere (10 - 100 ppm)25 (Yabushita et al., 2009;Finlayson-Pitts et al., 2003;Ramazan et al., 2004). A laboratory study utilizing isotopically 26 labeled water to investigate the reaction mechanism suggested that the formation of HONO resulted from the reaction 27 between adsorbed NO₂ and H⁺, while the formation of HNO₃ resulted from the reaction between adsorbed NO₂ and 28 OH^{-} , and did not involve the N₂O₄ intermediate (Gustafsson et al., 2009). Results from Gustafsson et al. (2009)

- suggest an acidity-dependent yield of HONO and HNO₃, favoring HONO at low pH values. A recent study in the
 northeast U.S. during winter found that modeled nitrate abundance was overestimated using a molar yield of 0.5 for
 HONO and HNO₃, and the model better matched the observations of NO₂ and nitrate when assuming a molar yield of
 1.0 for HONO (Jaeglé et al., 2018). Particles were acidic (pH < 2) during this measurement campaign (Guo et al.,
 2017;Shah et al., 2018), which may favor HONO production over HNO₃.
- We examine the potential importance of this acidity-dependent yield by implementing a pH-dependent product yield in two separate sensitivity simulations, first using an NO₂ aerosol uptake reaction probability of $\gamma = 10^{-4}$ as in the "standard" simulation and second with $\gamma_{NO2} = 10^{-7}$. The acidity-dependent yield for HONO and HNO₃ formation is based on the laboratory study by Gustafsson et al. (2009). We use aerosol pH calculated from ISORROPIA II (Fountoukis and Nenes, 2007) to calculate the concentration of [H⁺] and [OH⁻] in aerosol water. The yield of HONO (γ_{HONO}) from heterogeneous uptake of NO₂ on aerosol surfaces is calculated according to E3:

13
$$Y_{HONO} = \frac{[H^+]}{[H^+] + [OH^-]}$$
 (E3)

where $[H^+]$ and $[OH^-]$ are in units of M. The yield of HNO₃ from this reaction is equal to $(1 - Y_{HONO})$. E3 yields values of Y_{HONO} near unity for aerosol pH values less than 6, decreasing rapidly to zero between pH values between 6-8 (Figure 9). Calculated aerosol pH values are typically < 6 in the model except in remote regions far from NO_x sources (Figure S7), favoring the product HONO.

18

19 The acidity-dependent yield implemented in the "standard" simulation with $\gamma_{NO2} = 10^{-4}$ increases HONO 20 concentrations by up to 1 ppbv in China where this reaction is most important (Figure 10). Fractional increases in 21 HONO exceed 100% in remote locations (Figure 10). Increased HONO leads to increases in OH on the order of 10 22 -20% in most locations below 1 km altitude, while ozone concentrations increase in most locations by up to several 23 ppbv (Figure 10). The exception is the southern high latitudes; likely due to decreased formation and thus transport 24 of nitrate to remote locations. The impact on NO_x and nitrate budgets is relatively minor. The global, annual mean 25 NO_x burden near the surface (below 1 km) increases slightly (+2%) as a result of the decreased rate of conversion of 26 NO₂ to nitrate; the change to the global tropospheric burden is negligible. Annual-mean surface nitrate concentrations 27 show small decreases up to 1 ppbv in China where this reaction is most important in the model; impacts on nitrate 28 concentrations over a shorter time period may be more significant (Jaeglé et al., 2018). The fraction of HNO₃ formed

- 1 from $NO_2 + OH$ (49%) increases due to increases in OH from the HONO source. The fraction of HNO₃ formation 2 from the uptake and hydrolysis of N_2O_5 also increases (from 28% to 32%) due to reductions in the nighttime source 3 of nitrate from NO₂ hydrolysis. The calculated mean $\Delta^{17}O(nitrate)$ at the location of the observations shown in Figure 4 5 (27.9 \pm 5.0‰) is not significantly impacted due to compensating effects from changes in both high- and low-5 producing $\Delta^{17}O(\text{nitrate})$ values. Modeled monthly mean $\Delta^{17}O(\text{nitrate})$ in China, where NO₂ hydrolysis is most 6 important increases by ~1‰, but is still biased low by 1-2‰. 7 8 Using a combination of both the low reaction probability ($\gamma = 10^{-7}$) and the acidity-dependent yield gives similar results 9 as using $\gamma = 10^{-7}$ and assuming a molar yield of 0.5 for HONO and HNO₃ (not shown). In other words, including a 10 pH-dependent product yield rather than a yield of 0.5 for HONO and nitrate results in negligible differences for 11 oxidants, NO_x and nitrate abundances when the reaction probability (γ_{NO2}) is low.
- 12
- 13

4.2 Hydrolysis of organic nitrates (RONO₂)

14 Anthropogenic NO_x emissions have been increasing in China and decreasing in the U.S. and Europe (Richter et al., 15 2005; Hoesly et al., 2018b), with implications for the relative importance of inorganic and organic nitrate formation as 16 a sink for NO_x (Zare et al., 2018). To examine the impacts of recent changes in anthropogenic NO_x emissions for 17 nitrate formation pathways, we run the "standard" model using the year 2000 emissions and meteorology after a 1-18 year model spin up, and compare the results to the "standard" model simulation run in the year 2015. This time-period 19 encompasses significant changes in anthropogenic NO_x emissions in the U.S., Europe, and China, and encompasses 20 most of the time period of the observations shown in Figures 5 and 6. Total, global anthropogenic emissions of NO_x 21 are slightly lower in the 2000-year simulation (30 Tg N yr⁻¹) compared to the year 2015 simulation (31 Tg N yr⁻¹) due 22 to decreases in North America and Europe, counteracted by increases in Asia (Figure S7). This leads to increases of 23 less than 10% in the annual-mean, fractional importance of the source of nitrate from the hydrolysis of organic nitrates 24 in the U.S., and corresponding decreases of less than 10% over China (Figure 11). Relatively small changes (< 10%) 25 in nitrate formation pathways yield small changes (< 2‰) in modeled annual-mean $\Delta^{17}O(\text{nitrate})$ between the year 26 2000 and 2015, differences in $\Delta^{17}O(\text{nitrate})$ over shorter time periods may be larger. Changes in the formation of 27 nitrate from the hydrolysis of RONO2 remains unchanged globally, as increases in the U.S. and Europe and decreases 28 in China counteract one another.

1 2

4.3 Photolysis of aerosol nitrate

3 Observations have demonstrated that aerosol nitrate can be photolyzed at rates much faster than HNO₃(g) (Reed et al., 4 2017;Ye et al., 2016); however, the magnitude of the photolytic rate constant is uncertain. We examine the 5 implications of this process for global nitrate formation pathways by implementing the photolysis of aerosol nitrate as 6 described in Kasibhatla et al. (2018) into the "standard" model simulation, scaling the photolytic rate constant for both 7 fine- and coarse-mode aerosol nitrate to a factor of 25 times higher than that for HNO₃(g) (Kasibhatla et al., 8 2018; Romer et al., 2018), with a molar yield of 0.67 for HONO and 0.33 for NO_x production. The global, annual 9 mean NO_x burden near the surface (below 1 km) increases slightly (+2%) as a result of the photolytic recycling of 10 nitrate to NOx, similar to Kasibhatla et al. (2018). Aerosol nitrate photolysis results in only small impacts on the 11 relative importance of nitrate formation pathways (< 2%) likely due to simultaneous increases in O₃ and OH 12 (Kasibhatla et al., 2018), which in turn yields small impacts on calculated Δ^{17} O(nitrate) at the location of the 13 observations shown in Figure 5 (27.9 \pm 5.0%). Nitrate photolysis itself has minimal impact on Δ^{17} O(nitrate) because 14 it is a mass-dependent process (McCabe et al., 2005).

15

16 5 Conclusions

17 Observations of Δ^{17} O(nitrate) can be used to help quantify the relative importance of different nitrate formation 18 pathways. Interpretation of $\Delta^{17}O(nitrate)$ requires knowledge of $\Delta^{17}O(O_3)$, which until recently was highly uncertain. 19 Previous modeling studies showed good agreement between observed and modeled $\Delta^{17}O(\text{nitrate})$ when assuming 20 $\Delta^{17}O(O_3) = 35\%$. However, recent observations of $\Delta^{17}O(O_3)$ from around the world have shown $\Delta^{17}O(O_3) = 26 \pm 10^{-10}$ 21 1%, suggesting that models are underestimating the role of ozone relative to HO_x in NO_x chemistry. We utilize a 22 global compilation of observations of $\Delta^{17}O(\text{nitrate})$ to assess the representation of nitrate formation in a global 23 chemical transport model (GEOS-Chem). The modeled $\Delta^{17}O(nitrate)$ is roughly consistent with observations, with a 24 mean modeled and observed Δ^{17} O(nitrate) of (28.6 ± 4.5‰) and (27.6 ± 5.0‰), respectively, at the locations of the 25 observations. Improved agreement between modeled and observed $\Delta^{17}O(nitrate)$ is due to increased importance of 26 ozone versus HO₂ and RO₂ in NO_x cycling and an increase in the number and importance of nitrate production 27 pathways that yield high $\Delta^{17}O(\text{nitrate})$ values. The former may be due to implementation of tropospheric reactive

- 1 halogen chemistry in the model, which impacts ozone and HO_x abundances. The latter is due mainly to increases in 2 the relative importance of N_2O_5 hydrolysis, with the hydrolysis of halogen nitrates also playing an important role in 3 remote regions.
- 4

5 The main nitrate formation pathways in the model below 1 km altitude are from NO₂ + OH and N₂O₅ hydrolysis (both 6 41%). The relative importance of global nitrate formation from the hydrolysis of halogen nitrates and hydrogen-7 abstraction reactions involving the nitrate radical (NO₃) are of similar magnitude (~5%). The formation of nitrate 8 from the hydrolysis of organic nitrate has increased slightly in the U.S. and decreased in China (changes <10%) due 9 to changing NO_x emissions from the year 2000 to 2015, although the global mean fractional importance (6%) remains 10 unchanged as the regional changes counteract one another. Nitrate formation via heterogeneous NO2 and NO3 uptake 11 and $NO_2 + HO_2$ are negligible (<2%). Although aerosol nitrate photolysis has important implications for O_3 and OH, 12 the impacts on nitrate formation pathways are small.

13

14 The model parameterization for heterogeneous uptake of NO₂ has significant impacts on HONO and oxidants (OH 15 and ozone) in the model. HONO production from this reaction has been suggested to be an important source of OH 16 in Chinese haze due to high NO_x and aerosol abundances (Hendrick et al., 2014;Tong et al., 2016;Wang et al., 2017), 17 with implications for the gas-phase formation of sulfate aerosol from the oxidation of sulfur dioxide by OH (Shao et 18 al., 2018;Li et al., 2018b). More recent laboratory studies suggest that the reaction probability of NO₂ on aerosols is 19 lower than that previously used in the model. Using an NO₂ reaction probability formulation that depends on the 20 chemical composition of aerosols as described in Holmes et al. (2019) renders this reaction negligible for nitrate 21 formation, and has significant implications for modeled HONO, ozone, and OH. Although uncertainty also exists in 22 the relative yield of nitrate and HONO from this reaction, the impacts of this assumption are negligible when we use 23 these updated NO₂ reaction probabilities. Observations of $\Delta^{17}O(\text{nitrate})$ in Chinese haze events during winter (He et 24 al., 2018b) may help to quantify the importance of this nitrate production pathway in a region where the model predicts 25 it is significant.

26

Author contributions: B.A. designed the study and performed the model simulations and calculations. All otherauthors provided model code and contributed to writing and analysis.

1

2 Acknowledgements:

- 3 B.A. acknowledges NSF AGS 1644998 and 1702266 and helpful discussions with Joël Savarino and Ron Cohen.
- 4 C.D.H. acknowledges the NASA New Investigator Program grant NNX16AI57G. J.A.F. acknowledges Australian
- 5 Research Council funding DP160101598.
- 6

7 References

- 8 Abbatt, J. P. D., and Waschewsky, G. C. G.: Heterogeneous interactions of OHBr, HNO₃, O₃, and NO₂ with
- 9 deliquescent NaCl aerosols at room temperature, J. Phys. Chem. A, 102, 3719-3725, 1998.
- 10 Alexander, B., Savarino, J., Kreutz, K. J., and Thiemens, M. H.: Impact of preindustrial biomass-burning emissions
- 11 on the oxidation pathways of tropospheric sulfur and nitrogen, J. Geophys. Res., 109, D08303, doi:
- 12 10.1029/2003JD004218, 2004.
- 13 Alexander, B., Hastings, M. G., Allman, D. J., Dachs, J., Thornton, J. A., and Kunasek, S. A.: Quantifying
- 14 atmospheric nitrate formation pathways based on a global model of the oxygen isotopic composition (D¹⁷O) of 15 atmospheric nitrate, Atmos. Chem. Phys., 9, 5043-5056, 10.5194/acp-9-5043-2009, 2009.
- 16 Berhanu, T. A., Savarino, J., Bhattacharya, S. K., and Vicars, W. C.: ¹⁷O excess transfer during the NO₂ + O₃ --> 17 NO₃ + O₂ reaction, J. Chem. Phys., 136, 044311, doi: 10.1063/1.3666852, 2012.
- 18 Bertram, T. H., and Thornton, J. A.: Toward a general parameterization of N2O5 reactivity on aqueous particles: the
- 19 competing effects of particle liquid water, nitrate and chloride, Atmos. Chem. Phys, 9, 8351-8363, 10.5194/acp-9-20 8351-2009, 2009.
- 21 Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Liu, H. Y., Mickley, L. J., and
- 22 Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and
- 23 evaluation, J. Geophys. Res., 106, 23073-23095, 2001.
- 24 Bhattacharya, S. K., Pandey, A., and Savarino, J.: Determination of intramolecular isotope distribution of ozone by 25 oxidation reaction with silver metal, J. Geophys. Res, 113, D03303, doi:10.1029/2006JF008309, 2008.
- 26 Bhattacharya, S. K., Savarino, J., Michalski, G., and Liang, M.-C.: A new feature in the internal heavy isotope 27 distribution in ozone, J. Chem. Phys., 141, 10.1063/1.4895614, 2014.
- 28 Broske, R., Kleffmann, J., and Wiesen, P.: Heterogeneous conversion of NO2 on secondary organic aerosol
- surfaces: A possible source of nitrous acid (HONO) in the atmosphere?, Atmos. Chem. Phys, 3, 469-474, 29 30 10.5194/acp-3-469-2003, 2003.
- 31 Brothers, L. A., Dominguez, G., Fabian, P., and Thiemens, M. H.: Using multi-isotope tracer methods to understand 32 the sources of nitrate in aerosols, fog and river water in Podocarpus National Forest, Ecuador, Eos Trans. AGU, 89,
- 33 Abstract A11C-0136, 2008.
- 34 Browne, E. C., and Cohen, R. C.: Effects of biogenic nitrate chemistry on the NOx lifetime in remost continental
- 35 regions, Atmos. Chem. Phys, 12, 11917-11932, 10.5194/acp-12-11917-2012, 2014.

- 1 Burkhart, J. F., Sander, S. P., Abbatt, J. P. D., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L.,
- 2 Wilmouth, D. M., and Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Jet 3 Propulsion Laboratory, Pasadena, CA, USA, 2015.
- 4 Burkholder, J. B., Sander, S. P., Abbatt, J. P. D., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L.,
- 5 Wilmouth, D. M., and Wine, P. H.: Chemical kinetics and photochemical data for use in atmospheric studies:
- 6 evaluation number 18, Jet Propulsion Laboratory, Pasadena, CA, 2015.
- 7 Chen, Q., Schmidt, J. A., Shah, V., Jaeglé, L., Sherwen, T., and Alexander, B.: Sulfate production by reactive
- 8 bromine: Implications for the global sulfur and reactive bromine budgets, Geophys. Res. Lett., 44, 7069-7078,
- 9 10.1002/2017GL073812, 2017.
- 10 Chen, Q., Edebeli, J., McNamara, S. M., Kulju, K., May, N. W., Bertman, S. P., Thanekar, S., Fuentes, J. D., and
- Pratt, K. A.: HONO, Particulate Nitrite, and Snow Nitrite at a Midlatitude Urban Site during Wintertime, ACS Earth 11
- 12 Space Chem., 10.1021/acsearthspacechem.9b00023, 2019.
- 13 Costa, A. W., Michalski, G., Schauer, A. J., Alexander, B., Steig, E. J., and Shepson, P. B.: Analysis of atmospheric
- inputs of nitrate to a temperate forest ecosystem from D¹⁷O isotope ratio measurements, Geophys. Res. Lett., 38, 14 15 L15805, doi:10.1029/2011GL047539, 2011.
- 16 Crowley, J. N., Ammann, M., Cox, R. A., Hynes, R. G., Jenkin, M. E., Mellouki, A., Rossi, M. J., Troe, J., and
- 17 Wallington, T. J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume V – heterogeneous
- 18 reactions on solid substrates, Atmos. Chem. Phys, 10, 9059-9223, 10.5194/acp-10-9059-2010, 2010.
- 19 Domine, F., and Shepson, P. B.: Air-Snow Interactions and Atmospheric Chemistry, Science, 297, 1506, 2002.
- 20 Dubey, M. K., Mohrschladt, R., Donahue, N. M., and Anderson, J. G.: Isotope-specific kinetics of hydroxyl radical
- 21 (OH) with water (H₂O): Testing models of reactivity and atmospheric fractionation, J. Phys. Chem. A, 101, 1494-22 1500, 1997.

23 Evans, M. J., and Jacob, D. J.: Impact of new laboratory studies of N2O5 hydrolysis on global model budgets of tropospheric nitrogen oxides, ozone, and OH, Geophys. Res. Lett., 32, L09813, doi:10.1029/2005GL022469, 2005. 24

25 Ewing, S. A., Michalski, G., Thiemens, M., Quinn, R. C., Macalady, J. L., Kohl, S., Wankel, S. D., Kendall, C.,

- McKay, C. P., and Amundson, R.: Rainfall limit of the N cycle on Earth, Global Biogeochemical Cycles, 21, 26 27 GB3009, 10.1029/2006gb002838, 2007.
- 28 Finlayson-Pitts, B. J., Wingen, L. M., Sumner, A. L., Syomin, D., and Ramazan, K. A.: The heterogeneous
- 29 hydrolysis of NO₂ in laboratory systems and in outdoor and indoor atmospheres: An integrated mechanism, Phys. 30 Chem. Chem. Phys., 5, 223-242, 2003.
- 31 Fisher, J. A., Jacob, D. J., Travis, K. R., Kim, P. S., Marais, E. A., Miller, C. C., Yu, K., Zhu, L., Yantosca, R. M.,
- 32 Sulprizio, M. P., Mao, J., Wennberg, P. O., Crounse, J. D., Teng, A. P., Nguyen, T. B., St. Clair, J. M., Cohen, R.
- 33 C., Romer, P., Nault, B. A., Wooldridge, P. J., Jimenez, J. L., Campuzano-Jost, P., D.A., D., Hu, W., Shepson, P. B.,
- 34 Wiong, F., Blake, D. R., Goldstein, A. H., Misztal, P. K., Hanisco, T. F., Wolfe, G. M., Ryerson, T. B., Wisthaler,
- 35 A., and Mikoviny, T.: Organic nitrate chemistry and its implications for niteogen budgets in an isoprene- and
- mooterpene-rich atmosphere: constraints from aircraft (SEAC⁴RS) and ground-based (SOAS) observations in the 36
- 37 Southeast US, Atmos. Chem. Phys, 16, 5969-5991, 10.5194/acp-16-5969-2016, 2016.
- 38 Fisher, J. A., Atlas, E. L., Barletta, B., Meinardi, S., Blake, D. R., Thompson, C. R., Ryerson, T. B., Peischl, J.,
- 39 Tzompa-Sosa, Z. A., and Murray, L. T.: Methyl, Ethyl, and Propyl Nitrates: Global Distribution and Impacts on
- 40 Reactive Nitrogen in Remote Marine Environments, J. Geophys. Res., 123, 12,429-412,451,
- 41 doi.org/10.1029/2018JD029046, 2018.

- Fountoukis, C., and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K⁺-Ca²⁺-Mg²⁺-NH₄⁺-Na⁺-SO₄²⁻-NO₃⁻-Cl⁻-H₂O aerosols, Atmos. Chem. Phys., 7, 4639-4659, 2007.
- 3 Geng, L., Cole-Dai, J., Alexander, B., Savarino, J., Schauer, A. J., Steig, E. J., Lin, P., and Zatko, M. C.: On the
- 4 origin of the occasional springtime nitrate concentration maximum in Greenland snow, Atmos. Chem. Phys.
- 5 Discuss., 14, 9401-9437, 10.5194/acpd-14-9401-2014, 2014.
- 6 Geng, L., Murray, L. T., Mickley, L. J., Lin, P., Fu, Q., Schauer, A. J., and Alexander, B.: Isotopic evidence of
- multiple controls on atmospheric oxidants over climate transitions, Nature, 546, 133-136, 10.1038/nature22340,
 2017.
- 9 Guha, T., Lin, C. T., Bhattacharya, S. K., Mahajan, A. S., Ou-Yang, C.-F., Lan, Y.-P., Hsu, S. C., and Liang, M.-C.:
 10 Isotopic ratios of nitrate in aerosol samples from Mt. Lulin, a high-altitude station in Central Taiwan, Atmos. Env.,
- Isotopic ratios of nitrate in aerosol samples from Mt. Lulin, a high-altitude station in Central Taiwan, Atmos. Env.,
 154, 53-69, 10.1016/j.atmosenv.2017.01.036, 2017.
- Guo, H., Weber, R. J., and Nenes, A.: High levels of ammonia do not raise fine particle pH sufficiently to yield
 nitrogen oxide-dominated sulfate production, Scientific Reports, 7, 1-7, 10.1038/s41598-017-11704-0, 2017.
- Gustafsson, R. J., Kyiakou, G., and Lambert, R. M.: The molecular methanism of tropospheric nitrous acid
 production on mineral dust surfaces, Chem. Phys. Chem., 9, 1390-1393, 10.1002/cphc.200800259, 2009.
- 16 Gutzwiller, L., George, C., Rossler, E., and Ammann, J.: Reaction Kinetics of NO₂ with Resorcinol and 2,7-
- Naphthalenediol in the Aqueous Phase at Different pH, J. Phys. Chem. A, 106, 12045-12050, 10.1021/jp026240d,
 2002.
- Hastings, M. G., Sigman, D. M., and Lipschultz, F.: Isotopic evidence for source changes of nitrate in rain at
 Bermuda, J. Geophys. Res., 108, 4790, doi:10.1029/2003JD003789, 2003.
- He, P., Alexander, B., Geng, L., Chi, X., Fan, S., Zhan, H., Kang, H., Zheng, G., Cheng, Y., Su, H., Liu, C., and
 Xie, Z.: Isotopic constraints on heterogeneous sulfate production in Beijing haze, Atmos. Chem. Phys, 18, 5515 5528, 10.5194/acp-18-5515-2018 2018a.
- He, P., Xie, Z., Chi, X., Yu, X., Fan, S., Kang, H., Liu, C., and Zhan, H.: Atmospheric D¹⁷O(NO₃⁻) reveals nocturnal
- chemistry dominates nitrate production in Beijing haze, Atmos. Chem. Phys, 18, 14465–14476, 10.5194/acp-18 14465-2018, 2018b.
- 27 Hendrick, F., Muller, J.-F., Clemer, K., Wang, P., De Maziere, M., Fayt, C., Gielen, C., Hermans, C., Ma, J. Z.,
- 28 Pinardi, G., Stavrakou, T., Vlemmix, T., and Van Roosendael, M.: Four years of ground-based MAX-DOAS
- observations of HONO and NO₂ in the Beijing area, Atmos. Chem. Phys, 14, 765-781, 10.5194/acp-14-765-2014, 2014.
- Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert, J. J., Vu, L.,
- 32 Andres, R. J., Bolt, R. M., Bond, T. C., Dawidowski, L., Kholod, N., Kurokawa, J.-I., Li, M., Liu, L., Lu, Z., Moura,
- 33 M. C. P., O'Rourke, P. R., and Zhang, Q.: Historical (17502014) anthropogenic emissions of reactive gases and
- aerosols from the Community Emissions Data System (CEDS), Geosci. Model Dev., 11, 369-408, 10.5194/gmd-11 369-2018, 2018a.
- 36 Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert, J. J., Vu, L.,
- 37 Andres, R. J., Bolt, R. M., Bond, T. C., Dawidowski, L., Kholod, N., Kurokawa, J., Li, M., Liu, L., Lu, Z., Moura,
- 38 M. C. P., O'Rourke, P. R., and Zhang, Q.: Historical (1750–2014) anthropogenic emissions of reactive gases and
- aerosols from the Community Emissions Data System (CEDS), Geosci. Model Dev., 11, 369-408, 10.5194/gmd-11 369-2018, 2018b.

- 1 Holmes, C. D., Prather, M. J., and Vinken, G. C. M.: The climate impact of ship NOx emissions: an improved
- 2 estimate accounting for plume chemistry, Atmos. Chem. Phys, 14, 6801-6812, 10.5194/acp-14-6801-2014, 2014.
- 3 Holmes, C. D., Bertram, T. H., Confer, K. L., Graham, K. A., Ronan, A. C., Wirks, C. K., and Shah, V.: The role of
- 4 clouds in the tropospheric NOx cycle: a new modeling approach for cloud chemistry and its global implications,
- 5 Geophys. Res. Lett., 10.1029/2019GL081990, 2019.
- 6 Horowitz, L. W., Fiore, A. M., Milly, G. P., Cohen, R. C., Perring, A., Wooldridge, P. J., Hess, P. G., Emmons, L.
- 7 K., and Lamarque, J.-F.: Observational constraints on the chemistry of isoprene nitrates over the eastern United
- 8 States, J. Geophys. Res, 112, D12S08, doi:10.1029/2006JD007747, 2007.
- 9 Hudman, R. C., Moore, N. E., Martin, R. V., Russell, A. R., Mebust, A. K., Valin, L. C., and Cohen, R. C.: A
- 10 mechanistic model of global soil nitric oxide emissions: implementation and space based-constraints, Atmos. Chem.
- 11 Phys, 12, 7779-7795, 10.5194/acp-12-7779-2012, 2012.
- 12 Ishino, S., Hattori, S., Savarino, J., Jourdain, B., Preunkert, S., Legrand, M., Caillon, N., Barbero, A., Kuribayashi,
- K., and Yoshida, N.: Seasonal variations of triple oxygen isotopic compositions of atmospheric sulfate, nitrate, and
- ozone at Dumont d'Urville, coastal Antarctica, Atmos. Chem. Phys, 17, 3713-3727, 10.5194/acp-17-3713-2017,
 2017a.
- 16 Ishino, S., Hattori, S., Savarino, J., Jourdain, B., Preunkert, S., Legrand, M., Caillon, N., Barbero, A., Kurlbayashi,
- 17 K., and Yoshida, N.: Seasonal variations of triple oxygen isotopic compositions of atmospheric sulfate, nitrate, and
- ozone at Dumont d'Urville, coastal Antarctica, Atmos. Chem. Phys, 17, 3713-3727, 10.5194/acp-17-3713-2017,
 2017b.
- 20 Jacob, D. J.: Heterogeneous chemistry and tropospheric ozone, Atmos. Env., 34, 2131-2159, 2000.
- 21 Jacobs, M. I., Burke, W. J., and Elrod, M. J.: Kinetics of the reactions of isoprene-derived hydroxynitrates: gas
- 22 phase epoxide formation and solution phase hydrolysis, Atmos. Chem. Phys, 2014, 8933–8946, 10.5194/acp-14-
- **23** 8933-2014, 2014.
- 24 Jaeglé, L., Steinberger, L., Martin, R. V., and Chance, K.: Global partitioning of NO_x sources using satellite
- observations: Relative roles of fossil fuel combustion, biomass burning and soil emissions, Faraday Discussions,
 130, 407-423, DOI: 10.1039/b502128f, 2005.
- Jaeglé, L., Shah, V., Thornton, J. A., Lopez-Hilfiker, F. D., Lee, B. H., McDuffie, E. E., Fibiger, D., Brown, S. S.,
 Veres, P., Sparks, T. L., Ebben, C. J., Wooldridge, P. J., Kenagy, H. S., Cohen, R. C., Weinheimer, A. J., Campos,
 T. L., Montzka, D. D., Digangi, J. P., Wolfe, G. M., Hanisco, T., Schroder, J. C., Campuzano-Jost, P., Day, D. A.,
 Jimenez, J. L., Sullivan, A. P., Guo, H., and Weber, R. J.: Nitrogen oxides emissions, chemistry, deposition, and
 export over the Northeast United States during the WINTER aircraft campaign, J. Geophys. Res., 123, 12,368–312,393, doi.org/10.1029/2018JD029133, 2018.
- Jenkin, M. E., Cox, R. A., and Williams, D. J.: Laboratory studies of the kinetics of formation of nitrous acid from
 the thermal reaction of nitrogen dioxide and water vapor, Atm. Env., 22, 487-498, 1988.
- Johnston, J. C., and Thiemens, M. H.: The isotopic composition of tropospheric ozone in three environments, J.
 Geophys. Res., 102, 25395-25404, 1997.
- Kaiser, J., Hastings, M. G., Houlton, B. Z., Rockmann, T., and Sigman, D. M.: Triple Oxygen Isotope Analysis of
 Nitrate Using the Denitrifier Method and Thermal Decomposition of N₂O, Anal. Chem., 79, 599-607, 2007.
- 39 Kasibhatla, P., Sherwen, T., Evans, M. J., Carpenter, L. J., Reed, C., Alexander, B., Chen, Q., Sulprizio, M. P., Lee,
- 40 J. D., Read, K. A., Bloss, W. J., Crilley, L. R., Keene, W. C., Pzenny, A. A. P., and Hodzic, H.: Global impact of

- 1 nitrate photolysis of sea-salt aerosol on NOx, OH and ozone in the marine boundary layer, Atmos. Chem. Phys, 18,
- **2** 11185-11203, 10.5194/acp-18-11185-2018 2018.
- 3 Krankowsky, D., Bartecki, F., Klees, G. G., Mauersberger, K., Schellenback, K., and Stehr, J.: Measurement of
- 4 heavy isotope enrichment in tropospheric ozone, Geophys. Res. Lett., 22, 1713-1716, 1995.
- Krankowsky, D., Lammerzahl, P., and Mauersberger, K.: Isotopic measurements of stratospheric ozone, Geophys.
 Res. Lett., 27, 2593-2595, 2000.
- 7 Kunasek, S. A., Alexander, B., Hastings, M. G., Steig, E. J., Gleason, D. J., and Jarvis, J. C.: Measurements and
- 8 modeling of D¹⁷O of nitrate in a snowpit from Summit, Greenland, J. Geophys. Res., 113, D24302,
- **9** 10.1029/2008JD010103, 2008.
- 10 Lee, C., Martin, R. V., van Donkelaar, A., Lee, H., Dickerson, R. R., Hains, J. C., Krotkov, N., Richter, A., innikov,
- 11 K., and Schwab, J. J.: SO₂ emissions and lifetimes: Estimates from inverse modeling using in situ and global, space-
- based (SCIAMACHY and OMI) observations, J. Geophys. Res., 116, D06304, 10.1029/2010JD014758, 2011.
- 13 Lee, J. H., and Tang, I. N.: Accommodation coefficient of gaseous NO₂ on water surfaces, Atm. Env., 22, 1988.
- Li, L., Duan, Z., Li, H., Zhu, C., Henkelman, G., Francisco, J. S., and Zeng, X. C.: Formation of HONO from the
 NH3-promoted hydrolysis
- 16 of NO2 dimers in the atmosphere, Proc. Natl. Acad. Sci., 115, 7236–7241, 10.1073/pnas.1807719115, 2018a.
- Li, L., Hoffmann, M. R., and Colussi, A. J.: Role of Nitrogen Dioxide in the Production of Sulfate during Chinese
 Haze-Aerosol Episodes, Env. Sci. & Tech., 52, 2686-2693, 10.1021/acs.est.7b05222, 2018b.
- 19 Li, M., Q. Zhang, J. Kurokawa, J. H. Woo, K. B. He, Z. Lu, T. Ohara, Y. Song, D. G. Streets, G. R. Carmichael, Y.
- 20 F. Cheng, C. P. Hong, H. Huo, X. J. Jiang, S. C. Kang, F. Liu, H. Su, and Zheng, B.: MIX: a mosaic Asian
- anthropogenic emission inventory for the MICS-Asia and the HTAP projects, Atmos. Chem. Phys, 17, 935-963, 10.5194/acp-17-935-2017, 2017.
- 23 Liang, J., Horowitz, L. W., Jacob, D. J., Wang, Y., Fiore, A. M., Logan, J. A., Gardner, G. M., and Munger, J. W.:
- Seasonal budgets of reactive nitrogen species and ozone over the United States, and export fluxes to the global
- 25 atmosphere, J. Geophys. Res., 103, 13435–13450,, 1998.
- Liu, H., Jacob, D. J., Bey, I., and Yantosca, R. M.: Constraints from ²¹⁰Pb and ⁷Be on wet deposition and transport in a global three-dimensional chemical tracer model driven by assimilated meteorological fields, J. Geophys. Res., 106, 12,109-112,128, 2001.
- 29 Long, M. S., Keene, W. C., Easter, R. C., Sander, R., Liu, X., Kerkweg, A., and Erickson, D.: Sensitivity of
- tropospheric chemical composition to halogen-radical chemistry using a fully coupled size-resolved multiphase chemistry-global climate system: halogen distributions, aerosol composition, and sensitivity of climate-relevant
- gases, Atmos. Chem. Phys, 14, 3397-3425, 10.5194/acp-14-3397-2014, 2014.
- Lyons, J. R.: Transfer of mass-independent fractioation on ozone to other oxygen-containing molecules in the
 atmosphere, Geophys. Res. Lett., 28, 3231-3234, 2001.
- 35 Macintyre, H. L., and Evans, M. J.: Sensitivity of a global model to the uptake of N2O5 by tropospheric aerosol,
- 36 Atmos. Chem. Phys, 10, 7409-7401, 10.5194/acp-10-7409-2010, 2010.

- 1 Martin, R. V., Jacob, D. J., Yantosca, R. M., Chin, M., and Ginoux, P.: Global and regional decreases in
- 2 tropospheric oxidants form photochemical effects of aerosols, J. Geophys. Res., 108, 4097, doi:
- **3** 4010.1029/2002JD002622, 2003.
- 4 Mauersberger, K., Lämmerzahl, P., and Krankowsky, D.: Stratospheric Ozone Isotope Enrichments-Revisited,
- 5 Geophys. Res. Lett., 28, 3155-3158, 2001.
- McCabe, J. R., Boxe, C. S., Colussi, A. J., Hoffmann, M. R., and Thiemens, M. H.: Oxygen isotopic fractionation in
 the photochemistry of nitrate in water and ice, J. Geophys. Res., 110, D15310, 2005.
- 8 McCabe, J. R., Savarino, J., Alexander, B., Gong, S., and Thiemens, M. H.: Isotopic constraints on non-
- photochemical sulfate production in the Arctic winter, Geophys. Res. Lett., 33, L05810, 10.1029/2005GL025164,
 2006.
- McCabe, J. R., Thiemens, M. H., and Savarino, J.: A record of ozone variability in South Pole Antarctic snow: Role of nitrate oxygen isotopes, J. Geophys. Res, 112, D12303, doi:10.1029/2006JD007822, 2007.
- Michalski, G., and Bhattacharya, S. K.: The role of symmetry in the mass independent isotope effect in ozone, Proc.
 Natl. Acad. Sci., 106, 5493-5496, 2009.
- Michalski, G. M., Scott, Z., Kabiling, M., and Thiemens, M. H.: First measurements and modeling of D¹⁷O in atmospheric nitrate, Geophys. Res. Lett., 30, 1870, doi:1810.1029/2003GL017015, 2003.
- Morin, S., Savarino, J., Bekki, S., Gong, S., and Bottenheim, J. W.: Signature of Arctic surface ozone depletion
 events in the isotope anomaly (D¹⁷O) of atmospheric nitrate, Atmos. Chem. Phys., 6, 6255-6297, 2007.
- 19 Morin, S., Savarino, J., Frey, M. M., Yan, N., Bekki, S., Bottenheim, J. W., and Martins, J. M. F.: Tracing the
- Origin and Fate of NO_x in the Arctic Atmosphere Using Stable Isotopes in Nitrate, Science, 322, 730-732,
 10.1126/science.1161910, 2008.
- 22 Morin, S., Savarino, J., Frey, M. M., Dominé, F., Jacobi, H.-W., Kaleschke, L., and Martins, J. M. F.:
- Comprehensive isotopic composition of atmospheric nitrate in the Atlantic Ocean boundary layer from 65S to 79N,
 J. Geophys. Res, 114, D05303, doi:10.1029/2008JD010696, 2009.
- Morin, S., Sander, R., and Savarino, J.: Simulation of the diurnal variations of the oxygen isotope anomaly (D¹⁷O)
 of reactive atmospheric species, Atmos. Chem. Phys, 11, 3653-3671, doi:10.5194/acp-11-3653-2011, 2011.
- Müller, J.-F., Peeters, J., and Stavrakou, T.: Fast photolysis of carbonyl nitrates from isoprene, Atmos. Chem. Phys,
 14, 2497–2508, 10.5194/acp-14-2497-2014, 2014.
- Murray, L. T., Jacob, D. J., Logan, J. A., Hudman, R. C., and Koshak, W. J.: Optimized regional and interannual
 variability of lightning in a global chemical transport model constrained by LIS/OTD satellite data, J. Geophys.
- **31** Res., 117, D20307, 10.1029/2012JD017934, 2012.
- Newsome, B., and Evans, M. J.: Impact of uncertainties in inorganic chemical rate constants on tropospheric
 ocmposition and ozone radiative forcing, Atmos. Chem. Phys, 17, 14333-14352, 10.5194/acp-17-14333-2017, 2017.
- O'Brien, J., Shepson, P., Muthuramu, K., Hao, C., Niki, H., Hastie, D., Taylor, R., and Roussel, P.: Measurements
 of alkyl and multifunctional organic nitrates at a rural site in Ontario, J. Geophys. Res., 100, 22795–22804, 1995.

- 1 Parrella, J. P., Jacob, D. J., Liang, Q., Zhang, Y., Mickley, L. J., Miller, B., Evans, M. J., Yang, X., Pyle, J. A.,
- 2 Theys, N., and Roozendael, M. V.: Tropospheric bromine chemistry: implications for present and pre-industrial
- 3 ozone and mercury, Atmos. Chem. Phys. , 12, 6723-6740, 10.5194/acp-12-6723-2012, 2012.
- 4 Paulot, F., Crounse, J. D., Kjaergaard, H. G., Kroll, J. H., Seinfeld, J. H., and Wennberg, P. O.: Isoprene
- photooxidation: new insights into the production of acids and organic nitrates, Atmos. Chem. Phys., 9, 1479-1501,
 2009.
- 7 Ramazan, K. A., Syomin, D., and Finlayson-Pitts, B. J.: The photochemical production of HONO during the
- 8 heterogeneous hydrolysis of NO₂, Phys. Chem. Chem. Phys., 6, 3836-3843, 10.1039/b402195a, 2004.
- 9 Reed, C., Evans, M. J., Crilley, L. R., Bloss, W. J., Sherwen, T., Read, K. A., Lee, J. D., and Carpenter, L.: Evidence
 10 for renoxification in the tropical marine boundary layer, Atmos. Chem. Phys, 17, 4081-4092, 10.5194/acp-17-4081-
- 11 2017, 2017.
- Richter, A., Borrows, J. P., Nub, H., Granier, C., and Niemier, U.: Increase in tropospheric nitrogen dioxide over
 China observed from space, Nature, 437, 129–132, 10.1038/nature04092, 2005.
- 14 Rindelaub, J. D., McAvey, K. M., and Shepson, P. B.: The photochemical production of organic nitrates from a-
- pinene and loss via acid-dependent particle phase hydrolysis,, A`100tm. Env., 193–201,
- 16 10.1016/j.atmosenv.2014.11.010, 2015.
- 17 Romer, P. S., Wooldridge, P. J., Crounse, J. D., Kim, M. J., Wennberg, P. O., Dibb, J. E., Scheuer, E., Blake, D. R.,
- Meinardi, S., Brosius, A. L., Thames, A. B., Miller, D. O., Brune, W. H., Hall, S. R., Ryerson, T. B., and Cohen, R.
- 19 C.: Constraints on Aerosol Nitrate Photolysis as a Potential Source of HONO and NOx, Environmental Science &
- 20 Technology, 52, 13738-13746, 10.1021/acs.est.8b03861, 2018.
- 21 Saiz-Lopez, A., Lamarque, J. F., Kinnison, D. E., Tilmes, S., Ordonez, C., Orlando, J. J., Conley, A. J., Plane, J. M.
- 22 C., Mahajan, A. S., Sousa Santos, G., ATlas, E. L., Blake, D. R., Sander, S. P., Schauffler, S., Thompson, A. M.,
- 23 and Brasseur, G. P.: Estimating the climate significance of halogen-driven ozone loss in the tropical marine
- troposphere, Atmos. Chem. Phys, 12, 3939-3949, 10.5194/acp-12-3939-2012, 2012.
- Savarino, J., and Thiemens, M. H.: Analytical procedure to determine both d¹⁸O and d¹⁷O of H₂O₂ in natural water
 and first measurements, Atmos. Env., 33, 3683-3690, 1999b.
- Savarino, J., Kaiser, J., Morin, S., Sigman, D. M., and Thiemens, M. H.: Nitrogen and oxygen isotopic constraints
 on the origin of atmospheric nitrate in coastal Antarctica, Atmos. Chem. Phys., 7, 1925-1945, 2007.
- 29 Savarino, J., Bhattacharya, S. K., Morin, S., Baroni, M., and Doussin, J.-F.: The NO+O₃ reaction: A triple oxygen
- 30 isotope perspective on the reaction dynamics and atmospheric implications for the transfer of the ozone isotope
- anomaly, J. Chem. Phys., 128, 194303, 10.1063/1.2917581, 2008.
- 32 Savarino, J., Morin, S., Erbland, J., Grannec, F., Patey, M., Vicars, W., Alexander, B., and Achterberg, E. P.:
- Isotopic composition of atmospheric nitrate in a tropical marine boundary layer, PNAS, published ahead of print,
 doi:10.1073/pnas.1216639110, 2013.
- 35 Schmidt, J. A., Jacob, D. J., Horowitz, H. M., Hu, L., Sherwen, T., Evans, M. J., Liang, Q., Sulieman, R. M., Oram,
- D. E., Le Breton, M., Percival, C. J., Wang, S., Dix, B., and Volkamer, R.: Modeling the observed tropospheric BrO
- background: Importance of multiphase chemistry and implications for ozone, OH, and mercury, J. Geophys. Res.,
- **38** 121, 11,819-811,835, 10.1002/2015JD024229, 2016.
- 39 Shah, V., Jaeglé, L., Thornton, J. A., Lopez-Hilfiker, F. D., Lee, B. H., Schroder, J. C., Campuzano-Jost, P.,
- 40 Jimenez, J. L., Guo, H., Sullivan, A. P., Weber, R. J., Green, J. R., Fiddler, M. N., Bililign, S., Campos, T. L., Stell,

- 1 M., Weinheimer, A. J., Montzka, D. D., and Brown, S. S.: Chemical feedbacks weaken the wintertime response of
- particulate sulfate and nitrate to emissions reductions over the eastern United States, Proc. Natl. Acad. Sci., 115,
 8110-8115, 10.1073/pnas.1803295115, 2018.
- 4 Shao, J., Chen, Q., Wang, Y., Xie, Z., He, P., Sun, Y., Lu, X., Shah, V., Martin, R. V., Philip, S., Song, S., Zhao, Y.,
- 5 Zhang, L., and Alexander, B.: Heterogeneous sulfate aerosol formation mechanisms during wintertime Chinese haze
- 6 events: Air quality model assessment using observations of sulfate oxygen isotopes in Beijing, in prep, 2018.
- 7 Sherwen, T., Schmidt, J. A., Evans, M. J., Carpenter, L. J., Brobmann, K., Eastham, S. D., Jacob, D. J., Dix, B.,
- 8 Koenig, T. K., Sinreich, R., Ortega, I. K., Volkamer, R., Saiz-Lopez, A., Prados-Roman, C., Mahajan, A. S., and
- 9 Ordonez, C.: Global impacts of tropospheric halogens (Cl, Br, I) on oxidants and composition in GEOS-Chem,
- 10 Atmos. Chem. Phys, 16, 12239-12271, 10.5194/acp-16-12239-2016, 2016.
- Sherwen, T., Evans, M. J., Sommariva, R., Hollis, L. D. J., Ball, S. M., Monks, P. S., Reed, C., Carpenter, L. J., Lee,
 J. D., Forster, G., Bandy, B., Reeves, C. E., and Bloss, W. J.: Effects of halogens on European air-quality, Faraday
- 13 Discuss., 200, 75-100, 10.1039/C7FD00026J, 2017.
- 14 Singh, H. B., Herlth, D., O'Hara, D., Zahnle, K., Bradshaw, J. D., Sandholm, S. T., Talbot, R., Crutzen, P. J., and
- 15 Kanakidou, M.: Relationship of Peroxyacetyl nitrate to active and total odd nitrogen at northern high latitudes:
- 16 Influence of reservoir species on NO_x and O_3 , J. Geophys. Res, 97, 16,523-516,530, 1992.
- 17 Sofen, E. D., Alexander, B., Steig, E. J., Thiemens, M. H., Kunasek, S. A., Amos, H. M., Schauer, A. J., Hastings,
- 18 M. G., Bautista, J., Jackson, T. L., Vogel, L. E., McConnell, J. R., Pasteris, D. R., and Saltzman, E. S.: WAIS Divide
- 19 ice core suggests sustained changes in the atmospheric formation pathways of sulfate and nitrate since the 19th
- century in the extratropical Southern Hemisphere, Atmos. Chem. Phys., 14, 5749-5769, 10.5194/acp-14-5749-2014,
 2014.
- 22 Spataro, F., and Ianniello, A.: Sources of atmospheric nitrous acid: State of the science, current research needs, and
- future prospects, Journal of the Air and Waste Management Association, 64, 1232-1250,
- 24 10.1080/10962247.2014.952846, 2014.
- Stettler, M. E. J., Eastham, S., and Barrett, S. R. H.: Air quality and public health impacts of UK airports. Part I:
 Emissions, Atm. Env., 45, 5415-5424, 10.1016/j.atmosenv.2011.07.012, 2011.
- 27 Tan, F., Tong, S., Jing, B., Hou, S., Liu, Q., Li, K., Zhang, Y., and Ge, M.: Heterogeneous reactions of NO₂ with
- $\begin{array}{l} \text{CaCO}_3-(\text{NH}_4)_2\text{SO}_4 \text{ mixtures at different relative humidities, Atmos. Chem. Phys, 16, 8081-8093, 10.5194/acp-16 8081-2016, 2016. \end{array}$
- Tong, S. R., Hou, S. Q., Zhang, Y., Chu, B. W., Liu, Y. C., He, H., Zhao, P. S., and Ge, M. F.: Exploring the nitrous
 acid (HONO) formation mechanism in winter Beijing: direct emissions and heterogeneous production in urban and
- 32 suburban areas, Faraday Discuss., 189, 213-230, 10.1039/c5fd00163c, 2016.
- Vicars, W., and Savarino, J.: Quantitative constraints on the ¹⁷O-excess (D¹⁷O) signature of surface ozone: Ambient measurements from 50°N to 50°S using the nitrite-coated filter technique, Geochem. Cosmochem. Acta, 135, 270-287, 10.1016/j.gca.2014.03.023, 2014.
- 36 Vicars, W. C., Bhattacharya, S. K., Erbland, J., and Savarino, J.: Measurement of the 17O-excess (D¹⁷O) of
- tropospheric ozone using a nitrite-coated filter, Rapid Commun. Mass Spectrom., 26, 1219-1231, 10.1002/rcm.6218, 2012.
- 39 Vinken, G. C. M., Boersma, K. F., Jacob, D. J., and Meijer, E. W.: Accounting for non-linear chemistry of ship
- plumes in the GEOS-Chem global chemistry transport model, Atmos. Chem. Phys, 11, 11707-11722, 10.5194/acp 11-11707-2011, 2011.

- 1 von Glasow, R., and Crutzen, P. J.: Model study of multiphase DMS oxidation with a focus on halogens, Atmos.
- 2 Chem. Phys., 4, 589-608, 2004.
- 3 Wang, J. Q., Zhang, X. S., Guo, J., Wang, Z. W., and Zhang, M. G.: Observation of nitrous acid (HONO) in Beijing,
- 4 China: Seasonal variation, nocturnal formation and daytime budget, Science of the Total Environment, 587,
- 5 10.1016/j.scitotenv.2017.02.159, 2017.
- 6 Wang, X., Jacob, D. J., Eastham, S., Sulprizio, M., Zhu, L., Chen, Q., Alexander, B., Sherwen, T., Evans, M. J., Lee,
- 7 B. H., Haskins, J., Lopez-Hilfiker, F. D., Thornton, J. A., Huey, L. G., and Liao, H.: The role of chlorine in
- 8 tropospheric chemistry, Atmos. Chem. Phys. Discuss., 10.5194/acp-2018-1088, 2018.
- 9 Wang, Y. H., Jacob, D. J., and Logan, J. A.: Global simulation of tropospheric O₃-NO_x hydrocarbon chemistry 1.
- 10 Model formulation, J. Geophys. Res., 103, 10,713-710,725, 1998.
- 11 Xu, L., Guo, H., Boyd, C. M., Klein, M., Bougiatioti, A., Cerully, K. M., Hite, J. R., Isaacman-VanWertz, G.,
- 12 Kreisberg, N. M., Knote, C., Olson, K., Koss, A., Goldstein, A. H., Hering, S. V., de Gouw, J., Baumann, K., Lee,
- 13 S.-H., Nenes, A., Weber, R. J., and Ng, N. L.: Effects of anthropogenic emissions on aerosol formation from
- 14 isoprene and monoterpenes in the southeastern United States, Proc. Natl. Acad. Sci., 112, 37–42,
- 15 10.1073/pnas.1417609112, 2015.
- 16 Xu, W., Kuang, Y., Zhao, C., Tao, J., Zhao, G., Bian, Y., Yu, Y., Shen, C., Liang, L., and Zhang, G.: NH3-promoted
- 17 hydrolysis of NO2 induces explosive 1 growth in HONO, Atmos. Chem. Phys. Discuss.,
- 18 <u>https://doi.org/10.5194/acp-2018-996</u>, 2018.
- Yabushita, A., Enami, S., Sakamoto, Y., Kawasaki, M., Hoffman, M. R., and Colussi, A. J.: Anion-Catalyzed
 Dissolution of NO2 on Aqueous Microdroplets, J. Phys. Chem. A Lett., 113, 4844–4848, 10.1021/jp900685f, 2009.
- 21 Ye, C., Zhou, X., Pu, D., Stutz, J., Festa, J., Spolaor, M., Tsai, C., Cantrell, C., Mauldin Iii, R. L., Campos, T.,
- 22 Weinheimer, A., Hornbrook, R. S., Apel, E., Guenther, A., Kaser, L., Yuan, B., Karl, T., Haggerty, J., Hall, S.,
- Ullmann, K., Smith, J. N., Ortega, J., and Knote, C.: Rapid cycling of reactive nitrogen in the marine boundary
 layer, Nature, 532, 489-491, 10.1038/nature17195, 2016.
- 25 Ye, C., Zhou, X., Pu, D., Stutz, J., Festa, J., Spolaor, M., Tsai, C., Cantrell, C., Mauldin III, R. L., Weinheimer, A.,
- 26 Hornbrook, R. S., Apel, E. C., Guenther, A., Kaser, L., Yuan, B., Karl, T., Haggerty, J., Hall, S., Ullmann, K.,
- 27 Smith, J., and Ortega, J.: Tropospheric HONO distribution and chemistry in the southeastern US, Atmos. Chem.
- 28 Phys, 18, 9107-9120, 10.5194/acp-18-9107-2018, 2018.
- Zare, A., Romer, P. S., Nguyen, T., Keutsch, F. N., Skog, K., and Cohen, R. C.: A comprehensive organic nitrate
- chemistry: insights into the lifetime of atmospheric organic nitrates, Atmos. Chem. Phys. Discuss., 10.5194/acp 2018-530, 2018.
- Zhang, L., Gong, S., Padro, J., and Barrie, L.: A size-segregated particle dry deposition scheme for an atmosopheric
 aerosol module, Atmos. Env., 35, 549-560, 2001.
- 34
- 35
-
- 36
- 37

- **Table 1.** Calculated $\Delta^{17}O(\text{nitrate})$ in the model for each nitrate production pathway (X = Br, Cl,
- 2 and I; HC = hydrocarbon; MTN = monoterpene; ISOP = isoprene; $\Delta^{17}O(O_3^*) = 39\%$).

	Nitrate formation pathway	$\Delta^{17}O(nitrate)$		
Gas-phase reactions				
R1	$NO_2 + OH$	$^{2}/_{3}A\Delta^{17}O(O_{3}^{*})$		
R2	NO ₃ + HC	$(2/_{3}A + 1/_{3})\Delta^{17}O(O_{3}^{*})$		
R3	$NO + HO_2$	$\frac{1}{3}A\Delta^{17}O(O_3^*)$		
	Aerosol uptake from the gas-phase followed by hydrolysis			
R4	$N_2O_5 + H_2O_{(aq)}$	$(2/_{3}A + 1/_{6})\Delta^{17}O(O_{3}^{*})$		
R5	$N_2O_5 + Cl^-(aq)$	$(2/_{3}A + 1/_{3}) \Delta^{17}O(O_{3}^{*})$		
R6	$XNO_3 + H_2O_{(aq)}$	$(2/_{3}A + 1/_{3}) \Delta^{17}O(O_{3}^{*})$		
R7	$NO_2 + H_2O_{(aq)}$	$^{2}/_{3}A\Delta^{17}O(O_{3}^{*})$		
R8	$NO_3 + H_2O_{(aq)}$	$(2/_{3}A + 1/_{3}) \Delta^{17}O(O_{3}^{*})$		
R9	$RONO_2 + H_2O_{(aq)}$	$\frac{1}{2}A\Delta^{17}O(0_3^*)$		
	(where $RONO_2$ is from $NO + RO_2$)	10 37		
R10	$RONO_2 + H_2O_{(aq)}$	$(2/_{2}A + 1/_{3})\Delta^{17}O(O_{3}^{*})$		
	(where $RONO_2$ is from $NO_3 + MTN/ISOP$)			

- **Figure 1.** Simplified HNO₃ formation in the model. Numbers show the global, annual mean percent
 - 4 contribution to NO₂ and HNO₃ formation in the troposphere below 1 km for the "cloud chem"
 - 5 ("standard") simulation. Red indicates reactions leading to high D¹⁷O values, blue indicates reactions
 - 6 leading to low $D^{17}O$ values. $HO_2 = HO_2 + RO_2$; X = Br+Cl+I; HC = hydrocarbons; MTN = monoterpenes;
 - 7 ISOP = isoprene.
 - 8

9

- 11 Figure 2. Annual-mean fraction of NO₂ formation from the oxidation of NO in the troposphere below 1
- 12 km altitude in the "cloud chemistry" model.

N205+CI-

 $NO_2 + OH$

NO₃+HC

 $XNO_3 + H_2O$

NO+RO₂

NO2/NO3+H20

3 km altitude in the "cloud chemistry" model.

3 Figure 4. Modeled, annual-mean Δ^{17} O(nitrate) below 1 km altitude for the "cloud chemistry" model.

4 5

6

7 Figure 5. Comparison of monthly-mean modeled ("cloud chemistry") and observed D¹⁷O(nitrate) at

8 locations where there are enough observations to calculate a monthly mean. References for the

9 observations are in the text. The error bars represent different assumptions for calculated modeled A

values for nighttime reactions as described in the text. Error bars for Beijing and Mt. Lulin reflect the 10

range of possible modeled A values for nighttime reactions as described in the text. 11

Figure 6. Comparison of monthly-mean modeled ("cloud chemistry") and observed D¹⁷O(nitrate). Error
 bars for Mt. Lulin reflect the range of possible modeled A values for nighttime reactions as described in
 the text.

- ----

Figure 7. Modeled annual-mean HONO (left) and fine-mode nitrate (right) concentrations below 1 km altitude in the "standard" simulation (top) with $g_{NO2} = 10^{-4}$ for NO₂ hydrolysis. Absolute (middle) and relative (bottom) change in concentrations below 1 km altitude between the "standard" model and the

6 model simulation with $g_{NO2} = 10^{-7}$. Negative numbers represent a decrease relative to the standard

7 simulation.

- 2 Figure 8. Same as Figure 7 except for OH (left) and ozone (right).
- 3

1

4

3 function of pH.

5 Figure 10. Absolute (top) and relative (bottom) change in HONO (left), OH (middle), and ozone (right)

6 concentrations below 1 km altitude between the "standard" model and the model simulation with an

7 acidity-dependent yield from NO₂ hydrolysis. Positive numbers represent an increase relative to the

8 "standard" simulation.

1

- 2 **Figure 11.** Modeled annual-mean difference in the fractional production rate of HNO₃ from the
- 3 hydrolysis of organic nitrate below 1 km attitude in the year 2015 relative to 2000 (2015 2000).

4